
 

ERC20 Payment processing for 
LynkPay 

 
 

 

Abstract 
This paper outlines the technical implementation of LynkPay, a crypto payment processor 
designed to facilitate ERC20 token payments, primarily for USDT. The solution offers a 
non-custodial by design system for securely collecting payments in cryptocurrency. 
However, LynkPay is structured to collect and hold tokens temporarily in a wallet controlled 
by the platform in order to facilitate conversion into fiat currency for the merchants. This 
approach eliminates custodial risks while supporting the final transfer of funds as cash or fiat 
currency through exchange offices. This document provides an in-depth technical overview, 
explaining the system architecture, smart contract flow, and operational details. 
 

Introduction 

Motivation 
Traditional payment processors often introduce custodial risks, requiring merchants to trust 
centralized entities to handle their funds. With cryptocurrency payments, especially in 
ERC20 tokens, there is an opportunity to offer non-custodial solutions that allow direct token 
transfers. However, for practical reasons, especially with cryptocurrency-to-fiat conversions, 
it is often necessary to centralize the receipt of tokens before converting to fiat. LynkPay 
leverages a hybrid approach to balance non-custodial security with the need for fiat payouts 
to merchants. 

 



 

Objective 
LynkPay's goal is to provide a seamless payment processing system that allows merchants 
to receive payments in ERC20 tokens (such as USDT), but ensures that the funds are 
ultimately transferred to the merchants in fiat currency (such as USD, EUR). LynkPay 
achieves this by using a non-custodial payment processor at the blockchain level, while 
centralizing token receipt temporarily within LynkPay's wallet to facilitate conversion to fiat 
through partnered exchange offices. 

Use case 

User flow 
1. Merchant Sets Up a Payment Address: The merchant generates a payment 

address using the LynkPay forwarder factory. 
2. Customer Deposits Funds: The customer transfers ERC20 tokens (such as USDT) 

to the computed address generated by the merchant’s forwarder. 
3. Tokens Sent to LynkPay’s Wallet: After deployment of the forwarder contract, the 

ERC20 tokens are forwarded to a wallet controlled by LynkPay. 
4. Token Conversion and Payout: LynkPay works with exchange offices to convert the 

received tokens into fiat currency and transfer the equivalent amount to the 
merchant’s bank account. 

Benefits 
● Security: The system is non-custodial by design, with the forwarder contract 

ensuring that tokens are only held temporarily in LynkPay’s wallet for conversion. 
● Fiat Integration: By working with exchange offices, LynkPay converts the 

cryptocurrency into fiat for merchants, who can then use the funds in their local 
currency. 

● Reduced Custodial Risk: While the funds are held in LynkPay's wallet, they are only 
temporarily controlled, and full transparency is maintained through smart contract 
interactions. 

● Automated Fund Flushing: The forwarder contract ensures automatic fund 
forwarding once tokens are received, removing manual intervention. 

 



 

Technical Design 

Contract Components 
1. Factory Contract (ForwarderFactory): Deploys individual forwarder contracts 

using the CREATE2 opcode, ensuring predictable contract addresses and allowing 
merchants to securely receive payments. 

2. Forwarder Contract (Forwarder): A minimal contract that temporarily holds funds 
and automatically forwards them to a wallet controlled by LynkPay, where the tokens 
can be converted to fiat. 

 

Detailed Code Walkthrough 

Factory Contract 
The ForwarderFactory contract allows merchants to generate forwarder addresses that 
users can send tokens to. These addresses are deterministic, meaning they can be 
precomputed using the salt and bytecode hash. This enables merchants to share their 
payment address before any transaction takes place. 
 

● createClone(bytes _bytecode, uint256 _salt): Deploys a forwarder 
contract using the provided bytecode and salt, returning the contract’s address. 

● computeAddress(bytes32 salt, bytes32 bytecodeHash): Computes the 
address where the contract will be deployed, allowing merchants to share the 
address with customers before actual deployment. 

 
 
 



 
Forwarder Contract 
The Forwarder contract holds funds temporarily and forwards them to LynkPay's wallet. 
The contract contains a flushERC20 function to transfer tokens to LynkPay, enabling the 
exchange of cryptocurrencies for fiat. 
 

● flushERC20(address tokenContractAddress): Transfers the entire balance 
of ERC20 tokens held in the forwarder contract to LynkPay’s wallet. 

● Constructor: The constructor initializes the destination address, which in this case, 
is LynkPay’s wallet where tokens are forwarded. 

 

 
 

 



 

Step-by-Step Walkthrough 

Payment Flow 
1. Customer Transfers Funds: 

a. The customer transfers ERC20 tokens (such as USDT) to the computed 
forwarder address. 

2. Deployment and Forwarding: 
a. After the forwarder contract is deployed, the tokens are automatically 

forwarded to LynkPay’s wallet using the flushERC20 function. 
3. Token Conversion to Fiat: 

a. LynkPay works with exchange offices to convert the received tokens into fiat 
currency. 

4. Merchant Receives Fiat Payment: 
a. LynkPay transfers the fiat equivalent to the merchant, completing the payment 

process. 

 

 

Conclusion 
LynkPay offers a non-custodial by design solution for ERC20 token payments, leveraging 
the power of Ethereum smart contracts to create secure payment addresses for merchants. 
Although the system is designed to be non-custodial, tokens are temporarily routed to a 
wallet controlled by LynkPay to enable cryptocurrency-to-fiat conversion. This approach 
strikes a balance between decentralization and real-world functionality, ensuring merchants 
can receive their payments in fiat currency. The system automates token forwarding and 
simplifies the payment process for merchants, offering a scalable solution for modern 
payment systems. 
 


	ERC20 Payment processing for LynkPay 
	 
	Abstract 
	Introduction 
	Motivation 
	 
	Objective 

	Use case 
	User flow 
	Benefits 

	Technical Design 
	Contract Components 
	Detailed Code Walkthrough 
	Factory Contract 
	Forwarder Contract 


	 
	Step-by-Step Walkthrough 
	Payment Flow 

	Conclusion 

